
© 2018 Mesosphere, Inc. All Rights Reserved. 1

Doing CI/CD with
Containers

Docker Philadelphia
May 15, 2018

Elizabeth K. Joseph
@pleia2

© 2018 Mesosphere, Inc. All Rights Reserved. 2

❏ Developer Advocate at
Mesosphere

❏ 4 years working on CI/CD for
OpenStack

❏ 10+ years in Linux systems
administration and engineering
roles

❏ Author of The Official Ubuntu
Book and Common OpenStack
Deployments

Elizabeth K. Joseph, Developer Advocate

© 2018 Mesosphere, Inc. All Rights Reserved. 3

Continuous Delivery (CD) is a software engineering approach in
which teams produce software in short cycles, ensuring that the
software can be reliably released at any time.

Via https://en.wikipedia.org/wiki/Continuous_delivery

Definition: Continuous Delivery

https://en.wikipedia.org/wiki/Continuous_delivery

© 2018 Mesosphere, Inc. All Rights Reserved.

WEEK 1 WEEK 2 WEEK 3 WEEK 4

PROJECT
PLANNING

Customer
Feedback

Customer
Feedback

Customer
Feedback

RELEASE
1

RELEASE
2

RELEASE
3

RELEASE
4

Better products
through a repeatable
release cadence

Happier developers
through continuous
feedback

Dev

Test Stage

Release Dev

Test Stage

Release Dev

Test Stage

Release Dev

Test Stage

Release

4

Modern Release Process

© 2018 Mesosphere, Inc. All Rights Reserved. 5

CD with
Containers
and DC/OS:
2-pronged
approach

Run everything in containers!

CC BY 2.0: https://www.flickr.com/photos/rubbermaid/6909787969/

Organize everything efficiently!

CC BY-ND 2.0: https://www.flickr.com/photos/96227967@N05/24954030641/

https://www.flickr.com/photos/96227967@N05/24954030641/

© 2018 Mesosphere, Inc. All Rights Reserved. 8

Traditional Workload Flow Stages

Test Stage
(pre-prod) Production

Developers Operator Managed (Shared)

Install (Local) Development
(Local Deploy)

© 2018 Mesosphere, Inc. All Rights Reserved. 9

Modern Workload Flow Stages

Install (Local) Development
(Local Deploy) Test Stage

(pre-prod) Production

Developers (Local, Shared) Operator Managed (Shared)

© 2018 Mesosphere, Inc. All Rights Reserved. 1
0

Supporting various CI/CD pipelines

Jenkins JenkinsJenkins

GitLab Artifacto
ry

TravisCI TravisCI TravisCI

GitHub

Proprietary
Artifact
Registry

● Installing each service and
maintaining upgrades is
time-consuming, with each
machine having different OS’s
and tooling

○ More difficult because
teams like to use many
technologies and tools as
building blocks

○ Spinning up CD pipeline for
each application is
time-consuming

● Low utilization driven by silos of
developers with single-instances
of tools

● Poor allocation of capacity may
prevent developers from shipping
code, and acquiring new HW is
slow

Team A

Artifacto
ry

GitLab

Team B Team C Team D Team E Team F

Artifactory Artifactory

GitHub

© 2018 Mesosphere, Inc. All Rights Reserved. 11

NAIVE APPROACH

Typical Datacenter
siloed, over-provisioned servers,

low utilization

Industry
Average
12-15%

utilization

Jenkins-2

microservice

Cassandra

Jenkins-1

Artifactory

© 2018 Mesosphere, Inc. All Rights Reserved. 12

Docker

© 2018 Mesosphere, Inc. All Rights Reserved. 13

Use: Container

Why Docker?

● De facto standard that developers are
familiar with

● Portable Dockerfiles for sharing image
build source

● Ease of use for building, storing, and
deploying containers

DOCKER

© 2018 Mesosphere, Inc. All Rights Reserved. 14

The
“kernel”:
Apache
Mesos

© 2018 Mesosphere, Inc. All Rights Reserved. 15

Use: The primary resource manager and
negotiator
Why Mesos?

● 2-level scheduling
● Fault-tolerant, battle-tested
● Scalable to 10,000+ nodes
● Created by Mesosphere founder @ UC

Berkeley; used in production by 100+
web-scale companies [1]

[1]
http://mesos.apache.org/documentation/latest/powered-by-mesos/

APACHE MESOS

http://mesos.apache.org/documentation/latest/powered-by-mesos/

© 2018 Mesosphere, Inc. All Rights Reserved. 16

DC/OS

© 2018 Mesosphere, Inc. All Rights Reserved. 17

DC/OS: Datacenter Operating System
● Resource management
● Task scheduling
● Container orchestration
● Logging and metrics
● Network management
● “Universe” catalog of pre-configured

apps (including Jenkins, GitLab,
Artifactory…), browse at
http://universe.dcos.io/

● And much more https://dcos.io/

http://universe.dcos.io/
https://dcos.io/

© 2018 Mesosphere, Inc. All Rights Reserved. 18

DC/OS
Architecture
Overview

Security &
GovernanceContainer Orchestration Monitoring & Operations User Interface & Command

Line

GitLab Jenkins Marathon Cassandra Flink

Spark Artifactory Kafka MongoDB +30 more...

DC/OS

Services & Containers

ANY
INFRASTRUCTURE

© 2018 Mesosphere, Inc. All Rights Reserved. 19

Web-based UI

https://docs.meso
sphere.com/latest/
gui/

Interact with DC/OS (1/2)

https://docs.mesosphere.com/latest/gui/
https://docs.mesosphere.com/latest/gui/
https://docs.mesosphere.com/latest/gui/

© 2018 Mesosphere, Inc. All Rights Reserved. 20

CLI tool

https://docs.mesosphere.com
/latest/cli/

API

https://docs.mesosphere.com
/latest/api/

Interact with DC/OS (2/2)

https://docs.mesosphere.com/latest/cli/
https://docs.mesosphere.com/latest/cli/
https://docs.mesosphere.com/latest/api/
https://docs.mesosphere.com/latest/api/

© 2018 Mesosphere, Inc. All Rights Reserved. 21

MULTIPLEXING OF DATA, SERVICES, USERS, ENVIRONMENTS

Typical Datacenter
siloed, over-provisioned servers,

low utilization

Mesos/ DC/OS
automated schedulers, workload

multiplexing onto the same machines

Typical Datacenter
siloed, over-provisioned servers,

low utilization

Jenkins-2

microservice

Cassandra

Jenkins-1

Artifactory

© 2018 Mesosphere, Inc. All Rights Reserved. 2
2

DEPLOYING APPS

Manual Automatic
Scheduling

Deployment

Health
checks

Service
discovery

Persistence

● A sysadmin provisions one or more
physical/virtual servers to host the app

● Mesos resource offers (two-tier scheduling) offers
available resources directly to frameworks

● By hand or using Puppet / Chef / Ansible
● Jenkins SSHing to the machine and running a

shell script
● Note: all dependencies must also be present!

● Containers deployed, ideally using a CI/CD tool to
create/update app definitions

● Docker containers packages app and
dependencies

● Nagios pages a sysadmin ● Health checks, restarts unhealthy/failed
instances

● Static hostnames / IP addresses in a spreadsheet
or config management

● A sysadmin configures a load balancer manually
or with Puppet / Chef / Ansible

● Provides DNS resolution for running services
(hostname / IP address, ports, etc)

● Load balancer configs built dynamically using
cluster state

● Individual servers with RAID 1/5/6/10, expensive
SANs, NFS, etc.

● Dedicated, statically partitioned Ceph or Gluster
storage clusters

● External/persistent volumes (REX-Ray), HDFS,
etc.

● Self-healing Ceph or Gluster on Mesos / DC/OS

© 2018 Mesosphere, Inc. All Rights Reserved. 2
3

LET DEVELOPERS USE THE TOOLS THEY WANT
Development Team Self-Service for CI/CD

DC/OS

● Single-command installation of services
like Jenkins, GitLab, and Artifactory

● Once a service is installed, it can be run
across the entire datacenter, elastically
sharing all or some of the datacenter’s
resources

● Ability to run application code (PaaS),
containers, and distributed applications
with no restrictions to application
development teams

© 2018 Mesosphere, Inc. All Rights Reserved. 2
4

RELIABLE, SIMPLIFIED CI/CD INTEGRATION with DC/OS
Development Team Self-Service for CI/CD

Continuous
Integration

Artifact Repo &
Container
Registry

Container
Orchestrator

Version
Control
System

Load
Balancer

Production
Environment

Continuous Delivery Pipeline

git push

Apache Mesos & DC/OS

© 2018 Mesosphere, Inc. All Rights Reserved. 2
5

RELIABLE, SIMPLIFIED CI/CD INTEGRATION with DC/OS
Development Team Self-Service for CI/CD

Jenkins

GitLab,
Artifactory,

Nexus

Marathon,
Vamp

GitLab,
Bitbucket,
GitHub

Marathon-lbDC/OS
(Mesos)

Continuous Delivery Pipeline

git push

Apache Mesos & DC/OS

© 2018 Mesosphere, Inc. All Rights Reserved. 2
6

Old vs. New Deploy Process

http://labs.strava.com/blog/mesos/

Build a
Debian

package

Push
deb

pkg to
apt

server

Wait for apt server
to have deb

package ready

5 min 10 min 15 min 20 min 25 min 30 min

Boot a
new AWS
instance

Run puppet on the
instance, installing

the deb

Turn the
instance

into an AMI
image

Boot new
AWS

instances
using new

AMI

Terminate
old AWS

instances

“It would easily take 30 minutes for a single deploy even under ideal conditions
where nothing broke.”

Build
and

push
Docker
image

Deploy

30+
minutes

<1
minute

“A simple service might only take 20 seconds to fully deploy under ideal
conditions.”

Pre-
Container

Container

© 2018 Mesosphere, Inc. All Rights Reserved. 27

Advanced
Strategies!

© 2018 Mesosphere, Inc. All Rights Reserved. 28

Canary

“Canary release is a technique to reduce the risk of introducing a new software version in production by
slowly rolling out the change to a small subset of users before rolling it out to the entire infrastructure and
making it available to everybody.” https://martinfowler.com/bliki/CanaryRelease.html

Blue/Green

“One of the challenges with automating deployment is the cut-over itself, taking software from the final
stage of testing to live production. You usually need to do this quickly in order to minimize downtime. The
blue-green deployment approach does this by ensuring you have two production environments, as
identical as possible. At any time one of them, let's say blue for the example, is live. As you prepare a new
release of your software you do your final stage of testing in the green environment. Once the software is
working in the green environment, you switch the router so that all incoming requests go to the green
environment - the blue one is now idle.” https://martinfowler.com/bliki/BlueGreenDeployment.html

Canary and Blue/Green Deployments

https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/BlueGreenDeployment.html

© 2018 Mesosphere, Inc. All Rights Reserved. 29

Marathon

The Marathon scheduler in DC/OS has an API that can be called by
Jenkins jobs to specify how a deployment is completed. Since it’s a
custom configuration, you can be as specific as you need, but it does
make it a more complicated approach.

Get started at
https://mesosphere.github.io/marathon/docs/blue-green-deploy.html

More tips in the Zero Downtime Deployments Lab by
https://github.com/mhausenblas/zdd-lab

Blue/Green, Canary: Marathon

https://mesosphere.github.io/marathon/docs/blue-green-deploy.html
https://github.com/mhausenblas/zdd-lab

© 2018 Mesosphere, Inc. All Rights Reserved. 30

Vamp

This is can be simplified by using the open source Vamp tooling. Vamp easily hooks into
DC/OS, leveraging your existing Marathon scheduler but with specific definitions around
other types of deployments.

Vamp is available in the DC/OS Universe catalog.

Get started at
https://vamp.io/documentation/how-vamp-works/v0.9.5/architecture-and-components/

Watch in action on DC/OS in “Doing Real DevOps with DC/OS” by Julien Stroheker of
Microsoft at MesosCon EU back in October 2017:
https://www.youtube.com/watch?v=hNAWHZhMNf8

Blue/Green, Canary: Vamp

https://vamp.io/documentation/how-vamp-works/v0.9.5/architecture-and-components/
https://www.youtube.com/watch?v=hNAWHZhMNf8

© 2018 Mesosphere, Inc. All Rights Reserved. 31

Basic CD
pipeline
Demo with
GitLab &
Jenkins

© 2018 Mesosphere, Inc. All Rights Reserved. 32

Questions?

Elizabeth K. Joseph
@pleia2

ejoseph@mesosphere.com

@dcos

users@dcos.io

/dcos
/dcos/examples
/dcos/demos

chat.dcos.io

